Транцевые плиты
О транцевых плитах.
Если катер начинает двигаться с небольшой скоростью, постепенно увеличивая ее, то он не может обладать оптимальной формой подводной части для каждого значения скорости. Поэтому катера следовало бы снабжать устройствами, с помощью которых можно было бы приспособить форму днища к соответствующему состоянию движения и дифференту. Естественно, при этом думают не о корпусе катера из резины, а также не об эластичной изменяющейся конструкции. Для изменения формы днища применяют подпорные клинья и транцевые плиты. Подпорные клинья служат для постоянного изменения формы днища катера, например для того, чтобы путем исправления кормовой части днища добиться повышенной скорости хода. С помощью транцевых плит достигают точного приспособления к изменяющимся различным скоростям, влиянию волнения, переменной нагрузке катера. Подпорные клинья. С тех пор как появились мощные двигатели и высокие скорости, улучшения формы днища добивались путем применения подпорных клиньев под днищем. Тихоходное судно требует плавного, «закругленного» обтекания кормы, быстроходное же развивает хороший ход тогда, когда кормовая оконечность выполнена плоской без какого-либо закругления. На обоих рисунках видна конструкция подпорных клиньев под кормовой частью катера с округлыми обводами, а также катера с V-образными обводами. Подгонка таких подпорных клиньев к днищу катера с закругленной формой шпангоутов несколько сложней. В преобладающем большинстве случаев к днищу подгоняют и крепят при помощи болтов деревянные подпорные клинья. Их длина колеблется между 0,30 и 1,50 м и заканчивается у транца в большинстве случаев высотой от 20 до 80 мм в зависимости от размеров катера и необходимого изменения дифферента. Иногда эффективные подпорные клинья заканчиваются в корме высотой, равной 200 мм. Часто бывают удивительные результаты! Высоко задранная в небо носовая часть судна благодаря подъему кормовой части приходит в нормальное положение, всегда связанное со значительным выигрышем в скорости. Успех, достигнутый при установке подпорных клиньев, выигрыш в скорости и улучшенный дифферент ЯЕЛЯЮТСЯ бесспорным доказательством того, что выполненная форма днища не соответствует ожидаемой скорости. Предусмотреть поведение движущегося катера еще в стадии проектирования с помощью теоретического чертежа — это искусство, которому не учат. Оно приобретается многолетним опытом и помещенная в начале этой книги глава о соответствии формы катера собственной волне преследует цель избавить конструктора и строителя от меньших или больших ошибок. С ее помощью можно разобраться с динамикой быстроходного катера. Если при установке подпорных клиньев различной высоты были получены благоприятные результаты, но необходимо не медленно заново разработать теоретический чертеж катера, внеся изменения в форму днища. Накопленный опыт в изменении формы днища поможет в следующем проекте придать корме лучшую форму без установки подпорных клиньев. Так как входная кромка подпорного клина благодаря своему излому вызывает внезапное изменение направления потока, то улучшенной формой днища всегда достигают еще лучших результатов. Очень трудная и смелая операция — много раз поднимать катер на слип, менять подпорные клинья и затем на мерной миле снова определять эффект от произведенной замены. Не говоря уже о расходах, специалист испытывает некоторый страх перед количеством отверстий для болтов, которые необходимо просверлить в днище катера 87. Транцевые плиты. Транцевые плиты с устанавливаемым (изменяемым) углом атаки являются ничем иным, как улучшенным вариантом подпорных клиньев, угол которых может изменяться. Поскольку их легко можно приспособить к определенным условиям, они превосходят по качествам обычные подпорные клинья. Однако данные транцевые плиты не следует смешивать с регулируемыми транцевыми плитами, описанными ниже. Слово «изменяемые» в данном случае означает лишь то, что у стоящего катера можно изменять угол атаки транцевых плит. Водитель небольшого спортивного или гоночного катера благодаря несложным транцевым плитам получает возможность найти наилучший дифферент в зависимости от нагрузки или волнения. Немало катеров на ходу получают некоторый крен в результате вращающего момента гребного винта или из-за неблагоприятного распределения массы на борту. Если транцевую плиту на погружающейся стороне установить с несколько большим углом атаки, то можно ликвидировать кренящий эффект, возникающий на ходу катера. Калифорния является родиной специальных катеров для «гонок с ускорением». Гонки начинают на этих катерах почти из состояния «стоп», чтобы с наибольшим ускорением пройти короткую дистанцию, равную четверти мили. На катерах устанавливают транцевые плиты (их иначе называют кавитационными пластинами), проходящие от борта к борту на транце. В часто используемой конструкции плиты поддерживаются у транца при помощи талрепов и создают этим отличную возможность для точного регулирования угла атаки. Последовательно находят тот очень небольшой угол атаки, который еще на какую-то долю увеличивает ускорение очень быстроходного катера и путем минимального увеличенного угла с одного борта противодействует кренящему моменту гребного винта. Регулируемые транцевые плиты. Если талрепы, изменяющие угол установки транцевых плит, крепить не непосредственно к транцу, а к своеобразному кулачковому валику, то получаются так называемые регулируемые транцевые плиты. Такой кулачковый вал с короткими рычажками может поворачиваться водителем при помощи рукоятки или педали. В результате резкого старта в специальных «гонках с ускорением» катер стремится вылететь вперед, что не допускается правилами гонок. Водитель предотвращает это, переводя транцевые плиты на большой угол атаки. Как только у катера устанавливается нужная скорость и выравнивается дифферент, водитель перекладывает рукоятку и уменьшает угол атаки транцевых плит. Часто плиты даже откидывают вверх, чтобы избежать касания ими воды и сопротивления трения плит. Транцевые плиты, устанавливаемые на больших гоночных катерах, предназначенных для прибрежных и морских гонок, имеют ограниченную ширину. Обычно используют две небольшие плиты. Такой тип плит часто применяют также на спортивных катерах. Их регулирование может осуществляться при помощи простого рычажного механизма. Другим, еще более важным применением транцевых плит является их установка на больших и малых туристских катерах, которые в своих диапазонах скоростей сильно изменяют дифферент. На больших катерах регулирование транцевых плит из-за возникающих значительных сил осуществляется не при помощи простого механического привода, а посредством гидравлических цилиндров, приводимых в действие электрическим или ручным насосом. Также применяются электромеханические регулирующие устройства, у которых небольшой электродвигатель работает на ходовой винт или червяк. В идеальном случае форма и распределение массы катера должны быть уравновешены таким образом, чтобы на максимальном ходу не требовалось никакой корректировки дифферента транцевыми плитами. Тогда плиты откидывают вверх так, чтобы они не располагались в потоке воды. При необходимости их опускают, выбирая любой угол атаки до 10°; большие углы создают лишь ненужное торможение. На практике не выбирают заранее определенный угол установки транцевых плит, а путем его последовательного изменения находят оптимальный дифферент или максимальную скорость. Во время этой доводки следят за показаниями тахометра. Если частота вращения двигателя немного увеличилась, без изменения положения дроссельной заслонки карбюратора, то это будет свидетельствовать о том, что найденный угол атаки транцевых плит привел к улучшению хода. Автоматические транцевые плиты. Существуют транцевые плиты и с автоматической установкой угла атаки. Их действие связано с действием остроумного рычажного механизма, поддерживающего транцевую плиту и использующего давление воды на переднюю кромку плиты. Эта система обладает тем преимуществом, что не требует никакого механизма для дистанционного управления плитами, так как их угол атаки сам устанавливается в зависимости от скорости и дифферента. Наличие в схеме верхнего рычага с регулируемой длиной позволяет индивидуально регулировать систему для любого катера. Автоматические транцевые плиты регулируются таким образом, чтобы при наибольшем изменении дифферента катера создавать наибольшую силу поддержания. Если катер при увеличении скорости становится на ровный киль, то одновременно уменьшается угол атаки транцевых плит. Автоматика приспособлена и для движения на циркуляции, когда обе плиты получают различный угол атаки и обеспечивают лучшую остойчивость. Встроенные транцевые плиты. Преимущества регулируемых транцевых плит признаны также и некоторыми крупными катеро-строительными верфями. Такие , «Хат-терас» и другие начали предусматривать у транца углубления в днище, в которые встраивают утопленные транцевые плиты Транцевые плиты применяют в тех случаях, когда появляется сильный дифферент, затрудняющий ход катера и обзор водителю. Их устанавливают также и на очень быстроходных катерах на волнении, так как транцевые плиты способствуют улучшению поведения катера на ходу. Размеры транцевых плит. Изготовителям транцевых плит необходимо предоставлять возможность выбора соответствующих наиболее подходящих размеров. Попытки точного расчета не дают надежных результатов. С практической точки зрения можно рекомендовать использование следующих правил для приближенного определения размеров: Длина от транца до задней кромки транцевой плиты: легкие быстроходные катера, которые незначительно изменяют дифферент — 2% длины по ватерлинии тяжелые катера, сильно изменяющие дифферент — 3% длины по ватерлинии средние обычные катера — 2,5% длины по ватерлинии Ширина вдоль транца: легкие быстроходные катера, незначительно изменяющие дифферент — 2 плиты по V8 наибольшей ширины по ватерлинии тяжелые, сильно изменяющие дифферент катера — 2 плиты по V4 наибольшей ширины по ватерлинии при очень сильном изменении дифферента — транцевые плиты во всю ширину транца при длине, равной 3% длины по ватерлинии Транцевые плиты дают отличный пример того, как благодаря небольшим мероприятиям достигаются большие успехи. Неудивительно, что их используют даже на больших сторожевых катерах длиной 30 м и с мощностью главных двигателей 4000 л. с, несмотря на то, что их форма была установлена модельными испытаниями. Дифферентовка при помощи водяного балласта. Требования к мореходным качествам гоночных катеров, предназначенных для прибрежных и морских гонок, обычно весьма жесткие. Ни один другой тип катеров не выполняет таких диких прыжков на волне. Неудивительно, что эти катера оборудованы регулируемыми транцевыми плитами. Однако дифферент у них часто изменяют и при помощи водяного балласта. Это кажется несколько нелепым для легких гоночных катеров, но отлично оправдало себя. Применение водяного балласта позволяет опустить носовую часть катера и использовать инерцию балласта для уменьшения вертикальных ускорений в носовой части катера. К тому же имеется еще причина рекомендовать использование водяного балласта при гонках на большие дистанции. Катера на старте нагружены большим количеством топлива с расчетом, что достигнут цели с почти пустыми цистернами. Из-за этого значительно меняется состояние нагрузки катера во время гонок. Наполнение балластной цистерны в носовой части катера производится обычно путем использования динамического напора воды при ходе катера. Опущенный в воду патрубок, иногда размещенный на пере руля, улавливает воду с более чем достаточным давлением для быстрого заполнения цистерны забортной водой. Простота процесса позволяет, в зависимости от нагрузки катера и курса относительно волны, заполнять или снова опорожнять цистерны.
Подвесной мотор и дифферентовка.
В некоторых руководствах по обслуживанию подвесных моторов утверждается, что угол установки струбцин крепления мотора может изменить дифферент катера. Считают, что нос поднимется, если гребной вал направлен вверх, или нос опустится, если упор гребного винта будет направлен вниз.
Такое представление не соответствует действительности! Дифферентовочный эффект от упора гребного винта почти равен нулю! Регулировочный механизм для мотора имеет другое назначение, важное для хорошего хода. Пластина над гребным винтом, называемая также антикавитационной пластиной, должна точно располагаться по направлению водяного потока, чтобы не вызывать ненужного сопротивления и не подводить к гребному винту мешающее завихрение. Кроме того, она должна находиться не над водой, а слегка покрываться водой, чтобы гребной винт не терял эффективности из-за засасывания воздуха. Итак, необходимо выравнивать установку мотора, а не дифферент катера.
Транцевые плиты
Глиссирующие катера с малой относительной длиной (L/b ≤ 3) в переходном режиме движения имеют чрезмерный ходовой дифферент, значительно увеличивающий сопротивление. Отгиб днища вниз в кормовой части позволяет существенно уменьшить угол дифферента и, соответственно, сопротивление в переходном режиме. Однако с увеличением скорости и переходе на движение в режиме глиссирования отгиб днища приводит к тому, что дифферент становится меньше оптимального, который (в зависимости от килеватости и формы днища) должен составлять 3,5-5°. Уменьшение дифферента означает резкое возрастание смоченной поверхности и, как следствие, увеличение сопротивления трения. Поскольку каждой скорости соответствует свое, определенное значение угла дифферента, лучше использовать не фиксированный отгиб днища, а управляемые транцевые плиты, которые могут располагаться под наиболее выгодным для каждого режима движения углом. Такие плиты являются наиболее эффективным средством регулировки дифферента на ходу. Они представляют собой две пластины, прикрепленные к транцу на шарнирах и являющиеся как бы продолжением днища (рис. 95)
Рис. 95. Принцип действия транцевой плиты. Эти пластины можно отклонять вниз на небольшой угол α и тем самым создавать на них гидродинамическое давление, результирующая сила которого А направлена вверх перпендикулярно плоскости плиты. Эта сила пропорциональна квадрату скорости, а ее вертикальная составляющая D стремится поднять корму лодки, уменьшая угол дифферента. Сила сопротивления плит R, как правило, незначительна. Простейшие транцевые плиты нетрудно сделать из алюминиевого уголка и пластины (рис. 96).
Рис. 96. Конструкция простейшей транцевой плиты. Уголок 1 приклепывается к транцу лодки. К нижней его полке прикрепляют упругую пластину 2, угол изгиба задней кромки которой регулируется отжимными винтами 3. Для мотолодок длиной 4,5 м размер пластины по ширине а = 150 мм, размер b = 75 мм. В качестве примера эффективности установки транцевых пластин можно привести следующие данные. Мотолодка «Прогресс», оборудованная плитами указанных размеров с мотором мощностью 25 л. с. и водоизмещением 700 кг, получает выигрыш в скорости до 30 %. Этот показатель снижается при перемещении ЦТ судна в нос и уменьшении водоизмещения. Примерная схема расположения плит на транце мотолодки показана на рис. 97.
Рис. 97. Транцевые плиты. 1 — талрепы; 2 — обушки; 3 — штыри; 4 — шарниры. На практике заранее не выбирают какой-либо определенный угол установки транцевых плит, а находят его опытным путем в процессе оптимизации дифферента и замеров скорости. Во время такой доводки точные результаты можно получить с использованием тахометра. Например, если частота вращения двигателя увеличилась без изменения положения дроссельной заслонки, то это говорит о том, что найденный угол установки плит оказался эффективным. Конструкции транцевых плит К настоящему времени известно несколько конструкций управляемых транцевых плит, привод которых может быть механическим с ручным управлением, электромеханическим и электрогидравлическим (рис. 98).
Конструкции транцевых плит
К настоящему времени известно несколько конструкций управляемых транцевых плит, привод которых может быть механическим с ручным управлением, электромеханическим и электрогидравлическим (рис. 98).
Рис. 98. Управляемые транцевые плиты с гидравлическим приводом. 1 — алюминиевая плита; 2 — обтекатель из пружинящей пластины; 3 — пластиковый шарнир; 4 — основание, крепящееся к транцу; 5 — кронштейн; 6 — масляный трубопровод; 7 — гидроцилиндр; 8 — магниевый протектор. В частности, широкое распространение получили управляемые плиты «Bennett Trim Tabs» с гидроприводом для различных по длине лодок. Особую категорию составляют автоматические транцевые плиты. Угол отклонения этих плит изменяется автоматически в зависимости от дифферента катера и скоростного напора. Эта обратная связь обеспечивает оптимальное управление дифферентом в расчетном диапазоне скоростей. Схемы такого рода, используемые зарубежными фирмами, а также изготовленная на этом принципе плита показаны на рис. 99.
Рис. 99. Транцевые плиты с автоматическим изменением угла установки: а — «тяжелые» плиты «Аква-Стабс»; б — плита «Ден Оуден», 1 — плита; 2 — ось вращения; 3 — упор-ограничитель на кронштейне; 4 — регулируемое звено. Эти системы обладают тем преимуществом, что не требуют механизмов для дистанционного управления. Транцевые плиты «Аква-Стабс», запатентованные в США, предназначены для улучшения стартовых свойств глиссирующих катеров. Ось вращения плиты 2 расположена на некотором расстоянии от транца таким образом, что на стоянке и малом ходу передняя кромка плиты упирается в упоры 3, имеющиеся на продольных стенках. В момент, когда катер получает ход, плита расположена под большим углом атаки, и подъемная сила действует в основном на переднюю часть плиты, поднимая корму катера. При повышении скорости точка приложения гидродинамической силы постепенно смещается назад и отклоняет плиту в оптимальное для полного хода положение. При установке таких плит существенно сокращается период разгона катера и экономится моторесурс двигателя. Положение упора 3 и оси вращения подбирается опытным путем. Плиты этой конструкции изготовляются «тяжелыми» с утолщением в кормовой кромке. Существует несколько практических правил для приближенного определения размеров плит:
ЯХТЫ, КАТЕРА, БУКСИРЫ, БАРЖИ, ПАРОМЫ строителство и продажа
<< Предыдущая К оглавлению Следующая >> В период выхода на глиссирование и в момент преодоления «горба» сопротивления гребной винт на катере работает в тяжелом режиме. Требуется известное время, чтобы двигатели развили полный обороты и мощность и вывели судно на глиссирование. Задача управляемых на ходу транцевых плит (рис. 1) состоит в том, чтобы путем изменения продольной профилировки инища в начальный момент снизить дифферент катера и «горб» сопротивления, а по мере набирания скорости устранить этот эффект, аналогичный действию подпорного клина.
Рис. 1. Управляемые транцевые плиты с гидравлическим приводом: а — плита на транце катера; б— пульт управления. 1 — алюминиевая плита; 2 — обтекатель из пружинящей пластины; 2 — пластиковый шарнир; 4 — основание, крепящееся к транцу; 5 — кронштейн; 6 — масляный трубопровод, 7 — гидроцилиндр; 8 — магниевый протектор. При отклонении транцевых плит на угол а на них появляется дополнительная гидродинамическая подъемная сила, а также происходит перераспределение давлений на всем днище (рис. 2). По мере приближения к транцу поток воды, движущийся вдоль днища, подтормаживается, вследствие чего давление здесь заметно повышается (на рисунке пунктирной линией показана эпюра давления на цнише катера без транцевых плит).
Рис. 2. Схема действия транцевой плиты: а — дополнительная подъемная сила D, возникающая на плите при ее перекладке; б — распределение гидродинамического давления на днище.
Транцевые плиты позволяют регулировать ходовой дифферент во время плавания катера. Например, при выходе в плавание с полным запасом топлива и пассажирами на борту можно «настроить» катер на переходный режим движения, установив плиты под большим углом атаки. При снижении нагрузки отклонение плит можно уменьшить, снизив тем самым их сопротивление и придав катеру оптимальный дифферент. Для улучшения управляемости при сильном волнении может возникнуть необходимость увеличить ходовой дифферент катера — это также возможно осуществить с помощью транцевых плит. Как правило, на катерах устанавливают две транцевые плиты, разнесенные к бортам, с раздельным управлением, что позволяет выравнивать не только дифферент, но и крен судна. Это может оказаться важным для высокобортного катера с развитой надстройкой, когда он идет под углом к направлению ветра. Чтобы избежать сноса с курса, руль приходится перекладывать в наветренную сторону. Сила давления на перо руля и реакция воды на подветренную скулу вызывают крен судна в сторону ветра. При этом возрастает сопротивление в результате погружения скулы и повышенного брызгообразования. Увеличив угол атаки транцевой плиты со стороны накрененного борта, можно выровнять катер. Плиты используют и при резких поворотах — если не забыть опустить внутреннюю по отношению к центру циркуляции плиту, то крен не будет чрезмерным. Существующие конструкции транцевых плит можно разделить на плиты с автоматическим регулированием угла атаки (стартовые плиты), управляемые дистанционно с поста рулевого на ходу (с помощью механических, электромеханических и гидравлических устройств), и неуправляемые плиты, угол отклонения которых устанавливается на стоянке.
Рис. 3. Автоматические транцевые плиты «Аква-Стабо (а) и «Ден Оуден» (б).
Примером плит первого типа может служить устройство «Аква-Стабс», запатентованное Ауслендером и Томасом в США. Ось вращения 4 плиты 5 (рис. 3, а) расположена на некотором расстоянии от транца 1 таким образом, что на стоянке и малом ходу передняя кромка плиты упирается в штифты 2, имеющиеся на продольных стенках 3. В момент, когда катер начинает движение, плита расположена под большим углом атаки а, и подъемная сила действует в основном на переднюю часть плиты, поднимая корму катера. При повышении скорости точка приложения гидродинамической силы постепенно смещается назад и отклоняет плиту в оптимальное для полного хода горизонтальное положение. Благодаря применению этой конструкции плит существенно сокращается период разгона катера из положения «Стоп» до полной скорости и экономится моторесурс двигателя. Положение штифта 2 и оси вращения 4 подбирается опытным путем для каждого катера. Плиты «Аква-Стабс» изготавливаются тяжелыми, с утолщениемк кормовой кромке. Таков же принцип действия и автоматических плит голландской с параллелограммной подвеской к транцу (рис. 3, б). Рабочий угол атаки плиты фиксируется с помощью зубчатого соединения и гайки-барашка. На стоянке тяжелая плита висит в воде под большим углом, как и в конструкции «Аква-Стабс». Как только давление на плиту достигает определенной величины, она поднимается и остается в предварительно зафиксированном положении. Плитами (см. рис. 1) управляют дистанционно с поста рулевого с помощью гидравлического цилиндра. Рабочая часть плиты выполнена из стальной пружинящей пластины, соединенной с алюминиевой плитой. Эластичный профиль, вставляемый в пазы пластин, выполняет роль шарнира. Выступающие за транец катера плиты могут быть повреждены при швартовке. Поэтому существуют также плиты, встроенные в днище катера (рис. 4).
Рис. 4. Транцевые плиты, встроенные в днище катера.
Простейшие транцевые плиты, регулируемые только на стоянке и применяющиеся для небольших мотолодок и катеров, показаны на рис. 5. Плита состоит из алюминиевого угольника 1 и упругой пластины 2. Угол отгиба задней кромки пластины регулируется отжимными винтами 3. Для мотолодок длиной 4,5 м а = 150 мм, b = 75 мм; для катеров длиной 6,5 м a = 200 мм, b = 120 мм.
Рис. 5. Транцевая плита простейшей конструкции.
Для крупных катеров расстояние от кормовой кромки плиты до транца рекомендуется принимать в пределах 2—3% длины катера по ватерлинии, а ширину плиты — равной 1/4 — 1/5 ширины корпуса на скуле. << Предыдущая К оглавлению Следующая >>
Информационный портал СВАО
Специалисты в этой сфере сразу ответят вам на этот вопрос. Если вы установите транцевые плиты на свой катер, то вам сразу станет доступен такой скоростной режим, как скорость устойчивого глиссирования. В этой небольшой заметке мы рассмотрим некоторые аспекты транцевых плит.
В чём же заключаются преимущества от установки транцевых плит на катер?
- Увеличение скорости движения;
- Лучшая равномерность передвижения по волнам;
- Хорошо распределяется груз;
- Катер не прыгает по волнам;
- Повышается тяга винта;
- Снижается потребления топлива;
- Увеличивается равномерность работы двигателя;
- Улучшается обзорность и снижается создаваемая катером волна;
- Управление становится проще;
- Уменьшается ударная нагрузка на дно.
Если вы хотите настоящий интерцептор на лодке, то заходите по указанной ссылке, и выбирайте. Там есть система интерцепторов и большой выбор транцевых плит.
Как правило, транцевые плиты представляют собой две регулируемые пластины из стали. Они устанавливаются на транце катера. Их положение настраивается при помощи гидравлических патронов, которые опускают или поднимают пластины по команде с пульта управления. Специалисты сравнивают эффект от транцевых плит с таким же у закрылков и элеронов воздушных судов.
Транцевые плиты наращивают подъемную силу судна. Это обеспечивает компенсацию потери скорости, а также не идеальное состояние поверхности воды и неравномерное распределение груза на судне. Если пластины опущены, то водный поток, набегающий на них, обеспечивает подъемную силу для поднятия кармы. В результате снижается трение катера о водную поверхность. Стоит отметить, что эта сила увеличивается при росте площади транцевых плит, угла их наклона и скорости передвижения катера.
Иногда для обеспечения глиссирования капитаны катеров просят пассажиров переместиться на переднюю часть судна. Когда катер получает дополнительную подъемную силу от транцевых плит, то глиссирование происходит быстрее. Кроме того, в этом случае мотор меньше загружен и расходует меньше топлива.
Транцевые плиты монтируются по обе стороны от кормы. Они могут независимо отклоняться, что обеспечивает поперечное выравнивание катера. Стоит отметить, что более крупные катера испытывают более сильный эффект от функционирования транцевых плит. В случае быстроходных судов используются выравнивающие плиты, которые обеспечивают устойчивость и повышают скорость движения.
Если катер буксирует в воднолыжников, то транцевые плиты обеспечивают катеру быстрый ход без нужды увеличивать мощность его двигателя. Это значительно экономит топливо. Некоторые люди совершают такую ошибку, как покупка транцевых плит меньшего размера, чем это необходимо. В этом случае чтобы добиться необходимого эффекта потребуется сильнее делать наклон этих плит. Основное правило заключается в том, что чем больше поверхность плит, тем большую подъемную силу они обеспечивают при меньшем сопротивление движению.
Если этого недостаточно, необходимо передвинуть вперед место водителя, топливный бак и снабжение. Может потребоваться и увеличение наклона подвесного мотора (см. совет 273).
Транцевые плиты.
Наиболее эффективным средством регулировки дифферента являются регулируемые транцевые плиты. Обычно они представляют собой две небольшие пластины, шарнирно закрепленные к транцу в продолжение днища (рис. 252)
.
С помощью различных устройств пластины можно отклонять вниз на небольшой угол ос. При этом на каждой из них создается значительное гидродинамическое давление, результирующая сила которого А
направлена вверх перпендикулярно поверхности плиты.
Эта сила пропорциональна квадрату скорости катера, а ее вертикальная составляющая D
стремится поднять корму катера, т. е. уменьшить ходовой дифферент. Сила сопротивления плит движению R обычно невелика.
Этот способ уменьшения ходового дифферента особенно рекомендуется для катеров с двигателями, установленными в корме, или для легких мотолодок с двухмоторной установкой.
В зависимости от изменения нагрузки и скорости с помощью таких плит можно каждый раз «настраиваться» на оптимальный дифферент. Например, мотолодка, показывающая хорошую скорость с одним человеком, может идти в переходном к глиссированию режиме с четырьмя человеками на борту.
Увеличив угол отклонения транцевых плит, в последнем случае удается получить прирост скорости и снизить расход горючего. Наоборот, бывает полезным увеличить дифферент лодки на корму при ходе против большой волны.
Существуют конструкции, позволяющие изменять отклонение транцевых плит на ходу катера.
Наиболее простые плиты можно сделать из алюминиевого угольника и пластины (рис. 253)
. Угольник 1 приклепывают к транцу лодки.
К нижней его полке прикрепляют упругую пластину 2,
угол отгиба задней кромки которой регулируется отжимными винтами
3.
Для мотолодок длиной 4,5 м размер пластины по ширине
а
= 150 мм, размер
Ь
= 75 мм; для катеров длиной 6,5 м а = 200 мм,
Ь
= 120 мм.
На тяжелых катерах с центром тяжести, значительно смещенным к корме, требуется более прочная конструкция с упором регулируемой длины. Чаще всего этот упор (рис. 254)
выполняется в виде винтовой тяги — талрепа.
Расстояние от кормовой кромки плиты до транца рекомендуется принимать в пределах 2—3% длины катера по ватерлинии, а ее ширину — равной 1/4—1/5 ширины корпуса по скуле.
Транцевые плиты «Аква-Стабс», запатентованные Ауслендером и Томасом в США, предназначены для улучшения стартовых свойств (приемистости) глиссирующих катеров.
Ось вращения 4
плиты
5(рис. 255)
расположена на некотором расстоянии от транца 1 таким образом, что на стоянке и малом ходу передняя кромка плиты упирается в упоры 2, имеющиеся на продольных стенках 3.
В момент, когда катер получает ход, плита расположена под большим углом атаки а, и подъемная сила действует в основном на переднюю часть плиты, поднимая корму катера.
При повышении скорости точка приложения гидродинамической силы постепенно смещается назад и отклоняет плиту в оптимальное для полного хода горизонтальное положение.
Благодаря применению этой конструкции плит существенно сокращается период разгона катера из положения «Стоп» до полной скорости и экономится моторесурс двигателя. Положение упора 2
и оси вращения
4
подбирается опытным путем для каждого данного катера.
Плиты «Аква-Стабс» изготовляются тяжелыми, с утолщением к кормовой кромке.
Если мотор слишком мощный.
Нередко на лодку с водоизмещающими круглоскулыми обводами устанавливают излишне мощный автомобильный двигатель.
Корма таких судов не приспособлена к тому, чтобы воспринять гидродинамическую подъемную силу, которая начинает действовать на днище при повышении скорости, лодка идет с большим дифферентом.
Немного улучшают положение транцевая плита (рис. 256, а)
увеличенной площади или плавники
(рис. 256, б),
закрепленные по бортам в корме. Лучше же изменить обводы кормы, надстроив на днище у транца так называемый подпорный клин
(рис. 256, в
и
г).
Полученная более широкая плоская корма позволит лодке выйти на скольжение, если только она не слишком тяжела; во всяком случае, дифферент на корму обычно снижается и скорость возрастает.
Предыдущая К содержанию Следующая